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Two methods are described for the determination of Fourier coefficients Vh and V2,: with a high accuracy. 
In the first method, the fringe distances are at (1) the first-order Bragg position, (2) the second-order Bragg 
position and (3) the symmetric position. A measurement for magnesium oxide gave V~ = 1.78 + 0"05 and 
V222 = 3.90_+ 0" 10 volt. In the second method, which is proposed for the case where the second-order fringes 
are too broad for an accurate measurement, the same is done from fringe distances at (I) and (3) measured 
at least at two different accelerating voltages. A 15-beam calculation has shown that this method enables 
us to obtain highly accurate values, provided that the measurement is done at a conventional voltage around 
100 kV and an extremely high voltage over 1000 kV. 

Several methods are known for the determination of 
Fourier coefficients of crystal potential by the use of 
dynamical effects in electron diffraction (Hibi, Kambe & 
Honjo, 1955; Goodman & Lehmpfuhl, 1967; Watanabe, 
Uyeda & Fukuhara, 1968; Cowley, 1969; Gjonnes & Hoier, 
1971; Kreutle & Meyer-Ehmsen, 1971; Lehmpfuhl, 1972). 
For example, the use of thickness fringes in electron micro- 
graphs has long been known (Hibi, Kambe & Honjo, 
1955). However, a high accuracy has not been attained with 
this method because of the difficulty in calibrating the 
magnification of the electron microscope with an accuracy 
better than a few percent. 

In the first of the present methods, micrographs of thick- 
ness fringes are taken at the following three positions: (I) 
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Fig. I. Determination of V,~, and 1/222 of magnesiunl oxide 
by the first method. "Three curves are drawn with experi- 
mental values of ratios lsym/1111, ]~y,,1/lzz2 and 122,_/l~. A pair 
of broken lines is drawn corresponding to the errors of each 
ratio. The hexagon bounded by the three pairs may give an 
estinaate of the errors in V~,t and V.,.,2. 
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Fig. 2. Determination of I/2oo and 1/4oo of magnesium oxide 
by the second method. No experimental value is yet avail- 
able. The three curves show a result of 15-beam calculation. 

The exact Bragg position of the hth order, (2) that of the 
2hth order and (3) the symmetric position for the hth plane. 
It should be noted that distinct fringes are always obtained 
at position (3). The fringe distances /,,, 12n and 1,,, are 
measured for (I), (2) and (3) respectively. The ratios 
I~y,,/ln, i, ym/12~ and lzdlh are calculated. It is necessary that 
the three micrographs should be taken at the same magni- 
fication, but it is not necessary to know this value. According 
to the dynamical theory, each of the ratios is a function of 
Fourier coefficients V~, V2h, V3n, etc. and the accelerating 
voltage E, provided that the crystal is so oriented that no 
accidental interaction takes place. In practice, however, 
each ratio is essentially a function of three parameters, 
V~,, V2h and E, because V3,, and V's of higher order are 
known from other data and moreover, their small variation 
has no significant effect on the values of the ratios. Thus, 
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provided that E is known, Vn and V2h can be calculated 
from the experimental values of the three ratios. 

Fig. 1 gives an experimental result for magnesium oxide. 
The abscissa is V~ and the ordinate, Vzzz. The accelerating 
voltage is 100 kV. From each experimental value of the 
ratios, a curve is drawn on the diagram. The values of V~  
and //222 are determined from the intersection of the curves. 
The error can also be estimated as shown by broken lines in 
the Figure. The values obtained were V ~ =  1.78_+0.05 and 
V222= 3.90+0-10 volt. The former value is in good accord 
with that of Lehmpfuhl (1972). 

In many cases, the fringe distance is too large at the 
second-order position for an accurate value of /2n to be 
determined. The second method is proposed for such a case 
In this method, no fringes at the second order are required, 
while those at the first-order position and the symmetric 
position must be taken at least at two different accelerating 
voltages. Then, Vj, and V2h can be calculated from the ratios 
l, ym/l~ at these voltages. No experiment has yet been carried 
out with this method. A calculation was done to estimate 
the accelerating voltages adequate for the measurement. 

Fig. 2 shows a result obtained by assuming the values of 
l~ym/120o at 100, 1000 and 2000 kV. The three curves intersect 
at approximately 60'. This means that a high-accuracy 
measurement will be possible if the measurement is done 
at a conventional voltage around 100 kV and at least at an 
extremely high voltage over 1000 kV. 
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Theoretical expressions for the second, third and fourth moments of normalized intensity z and the 
fourth moment of the intensity (1) scattered by an asymmetric unit are given for crystals in which all 
atoms are in general positions. The expression for the fourth moment of I applicable to crystals con- 
taining atoms in both general and different types of special position is also given. 

Foster & Hargreaves (1963b) have given in "Fable 1 of 
their paper the expressions for the first three moments of 
the intensity (I) scattered by the asymmetric unit and these 
results are applicable to crystals (containing atoms at general 
positions in the unit cell) belonging to all but two of the 74 
space groups and the nine related plane groups in the tri- 
clinic, monoclinic and orthorhombic systems. They have also 
shown how these results could be used to derive the 
theoretical expressions for the second and third moments of 
the normalized intensity (z) when the crystal contains 
atoms in both general and special positions. In this note we 
shall list the expressions for the fourth moment of the in- 
tensity (1), since in some cases the tests based on the second 
and third moments of z may not be very effective. For 
example, for crystals containing a few (i.e. one or two) dom- 
inating heavy atoms besides a large number of light atoms, 
it may be useful to employ the fourth moment  of z. This is 
clear from Table 1 (computed from the results of Parthasa- 
rathy, 1966) which lists the higher moments of z for crystals 
containing one or two dominating atoms besides a large 
number of light atoms (for brevity referred to as the one- 
atom case and two-atom case respectively) in the space 
groups P 1 and P I  in terms of the parameter a2 (which is the 
fractional contribution to the local mean intensity from the 
heavy atoms in the unit cell.) 

* Contribution No. 361 from the Centre of Advanced 
Study in Physics, University of Madras, Madras-600025, India. 

Table 1. Higher moments of  z for the one-atom and two- 
atom cases when the heacy-atom contributions are 

0.7, 0"8 andO'9 

The tabulated values have been calculated from the results of 
Parthasarathy (1966). Note the inefficiency of (z 2) and the 

distinction of (z 4) in all the cases. 

Space One-atom case Two-atom case 
a~ group (Z 2 ) (Z 3 ) (Z 4 ) (Z 2 ) (Z3> (Z 4 ) 

0"7 P 1 i "51 2"96 7"07 1 "76 4" 14 1 ! "94 
PT 2"02 5"79 21.17 2"27 7"40 30"93 

0"8 P1 1"36 2"29 4"55 1.68 3"63 9.31 
P]  1-72 3"99 I 1"51 2"04 5"72 i 9"89 

0.9 PI 1.19 1"63 2"50 1.60 3"08 6"75 
PT 1"38 2"37 4"79 1 "79 4"07 10"92 

Another purpose of this note is to list the explicit ex- 
pressions for the second, third and fourth moments of the 
normalized intensity z applicable for crystals containing all 
atoms at general positions in the unit cell, since such crys- 
tals are of frequent occurence. As the expressions for (/4) 
for crystals containing ato:ns in both general and special 
positions and for (z"), n = 2 ,  3 and 4, for crystals con- 
taining all atoms in general positions could be derived from 
the theoretical results of Foster & Hargreaves (1963a) we 
shall give only the final results, omitting all the intermediate 
steps. The notation followed in this paper is the same as 
that used by Foster & Hargreaves (1963a, b). 


